direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Publications from the Chair of Electronic Measurement and Diagnostic Technology

next >> [12]

2021

Securing Deep Learning Models with Autoencoder based Anomaly Detection [16]

Kühne, J., März, C. and Gühmann, C.

PHM Society European Conference 6(1), p. 13. 2021

Download Bibtex entry [17]

Diagnosis of Bearing Faults in Electrical Machines Using Long Short-Term Memory (LSTM) [18]

Sabir, R., Rosato, D., Hartmann, S. and Gühmann, C.

Deep learning applications. Springer, 81–99. 2021

Link to publication [19] Download Bibtex entry [20]

Signal Generation Using 1d Deep Convolutional Generative Adversarial Networks for Fault Diagnosis of Electrical Machines [21]

Sabir, R., Rosato, D., Hartmann, S. and Gühmann, C.

25th International Conference on Pattern Recognition (ICPR 2020) 2021

Download Bibtex entry [22]

Schätzung des Verschleißvolumens an Gleitlagern [23]

Bote-Garcia, J.-L. and Gühmann, C.

tm-Technisches Messen. Oldenbourg Wissenschaftsverlag, s17–s21. 2021

Download Bibtex entry [24]

RIANN—A Robust Neural Network Outperforms Attitude Estimation Filters [25]

Weber, D., Gühmann, C. and Seel, T.

AI, 444–463. 2021

Link to publication [26] Download Bibtex entry [27]

Non-Autoregressive vs Autoregressive Neural Networks for System Identification [28]

Weber, D. and Gühmann, C.

arXiv:2105.02027 [cs, eess] 2021

Link to publication [29] Download Bibtex entry [30]

SiCWell Dataset [31]

Weber, D.

2021

Link to publication [32] Download Bibtex entry [33]

Modeling of A Bearing Test Bench and Analysis of Defect Bearing Dynamics in Modelica [34]

Ruan, D., Li, Z. and Gühmann, C.

Modelica Conferences, 373–382. 2021

Download Bibtex entry [35]

Exploration and Effect Analysis of Improvement in Convolution Neural Network for Bearing Fault Diagnosis [36]

Ruan, D., Zhang, F. and Gühmann, C.

2021 IEEE International Conference on Prognostics and Health Management (ICPHM), 1–8. 2021

Download Bibtex entry [37]

Bearing Fault Classification Based on Convolutional Neural Network and Uncertainty Analysis [38]

Ruan, D., Geng, S., Yan, J. and Gühmann, C.

2021 40th Chinese Control Conference (CCC), 4319–4326. 2021

Download Bibtex entry [39]

Collaborative Optimization of CNN and GAN for Bearing Fault Diagnosis under Unbalanced Datasets [40]

Ruan, D., Song, X., Gühmann, C. and Yan, J.

Lubricants. Multidisciplinary Digital Publishing Institute, 105. 2021

Download Bibtex entry [41]

2020

Klassifikation von Grübchenschäden an Zahnrädern mittels Vibrationsmessungen [42]

Grzeszkowski, M., Nowoisky, S., Scholzen, P., Kappmeyer, G., Gühmann, C., Brimmers, J. and Brecher, C.

tm - Technisches Messen, 56–61. 2020

Download Bibtex entry [43]

Road Surface Reconstruction by Stereo Vision [44]

Brunken, H. and Gühmann, C.

PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 433–448. 2020

Download Bibtex entry [45]

Hybrid Modeling of a Catalyst with Autoencoder Based Selection Strategy [46]

Kühne, J., März, C., Werfel, J., Gelbert, G., Behrendt, F. and Gühmann, C.

SAE Powertrains, Fuels and Lubricants Meeting. SAE International. 2020

Download Bibtex entry [47]

Wear monitoring of journal bearings with acoustic emission under different operating conditions [48]

Bote-Garcia, J.-L., Mokhtari, N. and Gühmann, C.

PHM Society European Conference, 8. 2020

Link to publication [49] Download Bibtex entry [50]

next >> [62]

« [63]December 22» [64]
MoTuWeThFrSaSu
   1234
567891011
12131415161718
19202122232425
262728293031 
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008