direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Publications from the Chair of Electronic Measurement and Diagnostic Technology

Diagnosis of Bearing Faults in Electrical Machines Using Long Short-Term Memory (LSTM)
Citation key RussellSabir.2021b
Author Sabir, Russell and Rosato, Daniele and Hartmann, Sven and Gühmann, Clemens
Title of Book Deep learning applications
Pages 81–99
Year 2021
ISBN 978-981-15-6758-2
DOI \url10.1007/978-981-15-6759-94
Address Singapore
Editor Wani, M. A. and Khoshgoftaar, Taghi M. and Palade, Vasile
Publisher Springer
Series Advances in Intelligent Systems and Computing Ser
Abstract Request PDF | Diagnosis of Bearing Faults in Electrical Machines Using Long Short-Term Memory (LSTM) | Rolling element bearings are very important components in electrical machines. Almost 50% of the faults that occur in the electrical machines... | Find, read and cite all the research you need on ResearchGate
Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

«August 22»
MoTuWeThFrSaSu
1234567
891011121314
15161718192021
22232425262728
293031